
© 2021 Apex.AI, Inc.

Safe and certified software
for autonomous mobility

How Apex.AI Certified ROS 2 According to ISO 26262 ASIL-D
Dejan Pangercic (dejan@apex.ai)

mailto:dejan@apex.ai

© 2021 Apex.AI, Inc.

Relevance to Autoware Community

1. Autoware.Auto uses ROS2. If AWF members want to
certify whole or parts of Autoware.Auto and then sell
that as part of the fully certified complete SW AD
stack - they need a certified framework

2. ROS2 is a C++14 product. This talk is largely about
how to certify any C++ code base (independent of
ROS2, Autoware.Auto, ...)

3. The process of certification improved the quality of
Apex.AI fork of ROS2. Consequently this talk is also
about the code quality

4. ISO 26262 is at the center of standardization in the
automotive industry. There is no more important
standard and one can not avoid it if you build
production systems for automotive. Consequently
this talk is about sharing an experience of going
through the process of ISO 26262 certification

© 2021 Apex.AI, Inc.

But the entire AD Stack is Huge
Focus of this talk

© 2021 Apex.AI, Inc.

AVP

https://docs.google.com/file/d/1IJ3jNc2SQMVyJKKN-P0K8NqjMYz5Y4C0/preview

© 2021 Apex.AI, Inc.

We have a Base Functional AD System - What Next?

1. System Safety:

a. ISO 26262 Certification

i. Code

ii. HW

b. System specification and operating environment

(ODD)

c. HARA

d. Design for redundancy

e. Validation plan

i. System validation (ISO 15288)

f. SOTIF

i. Scenario-based testing with statistical sampling

in simulation (NCAP, NHTSA scenarios)

g. Closed course testing

h. Public road testing

i. Simulation

i. SIL and HIL Testing

2. AV Technology:

a. Object and event detection and response

b. Fallback systems

3. AV Operation:

a. ODD

b. AV Operators

c. Incident response and management

4. Interfaces:

a. Passenger and road user interface

b. Cybersecurity

c. Data management

Source: Motional, VSSA, 2021

https://motional.com/mtl-content/uploads/2021/01/Motional_Voluntary_Safety_Self-Assessment.pdf

© 2021 Apex.AI, Inc.

We have a Base Functional System - What Next?

1. System Safety:

a. ISO 26262 Certification

i. Code

ii. HW

b. System specification and operating environment

(ODD)

c. HARA

d. Design for redundancy

e. Validation plan

i. System validation (ISO 15288)

f. SOTIF

i. Scenario-based testing with statistical sampling

in simulation (NCAP, NHTSA scenarios)

g. Closed course testing

h. Public road testing

i. Simulation

i. SIL and HIL Testing

2. AV Technology:

a. Object and event detection and response

b. Fallback systems

3. AV Operation:

a. ODD

b. AV Operators

c. Incident response and management

4. Interfaces:

a. Passenger and road user interface

b. Cybersecurity

c. Data management

Source: Motional, VSSA, 2021

Focus of the rest of
the talk

https://motional.com/mtl-content/uploads/2021/01/Motional_Voluntary_Safety_Self-Assessment.pdf

© 2021 Apex.AI, Inc.

Apex.OS Development Lifecycle

Automotive
Stakeholder
Require-men
ts (ASR)

builtin_interfaces

connext_micro_support

allocator

logging

rclcpp

threading

Feature set
reduction

Apply real-time
and determinism
constraints

1. Memory static
2. Remove
blocking calls and
recursions

builtin_interfaces_cert

connext_micro_support_cert

allocator_cert

logging_cert

rclcpp_cert

threading_cert

Apex_ecu_monitor (native)

Apex_utils (native)

Requirements Architecture Unit Design V&V Conf. Reviews

Elicitation,
Safety
Concept, SW
Safety
Requirements

UML (unified
modeling
language),
FMEA

SCA (Static Code
Analysis), SW
practices outline,
coverage, FMEA

Req, arch, unit,
integration,
system,
performance,
fault injection
tests

Safety manual,
Restrictions,
Traceability

Apex.OS Cert

ISO 26262/SEooC/part3,part6…. processes

© 2021 Apex.AI, Inc.

Apex.OS Certification Activities per package

1. Reduce the feature set of a package and extensions

2. Investigation to make APIs memory static & ensure

no blocking calls

3. Static Code Analysis (SCA)

4. Structural Coverage (statement, branch and MC/DC)

5. Notations of Designs (modelling diagrams)

6. Principles of SW architecture and design

7. Control and data flow analysis

8. Integration and Specialized tests

9. Requirements and traceability

10. Safety Analysis (FMEA)

11. Generate Safety Artifacts (TUV submission)

12. Testing on Target platform/hardware

13. Tool Classification and Qualification

Total 24 pkgs selected for first release of Apex.OS

Some activities such as Tool classification and qualification,

integration testing done at Apex.OS level.

Close to 100 safety artifacts had to be generated to provide

evidence of ASIL D compliance to our certification agency.

© 2021 Apex.AI, Inc.

Real-Time Gaps in ROS 2

ROS 2 exhibits the following gaps to enable real-time performance.

Real-Time Gaps

Non static mem operations Standard threading

Blocking calls/deadlocksThread priorities,
scheduling, pinning

Scheduling based on
readiness of data (executor)Standard containers Standard exceptions

non-real-time middleware

No control
(std::thread)

Higher risk of
dead locks since

no tooling

Increased
thrashing

Runtime mem
allocation

Mem
fragmentation

Handler lookup
non-deterministic
due to inheritance

Exception throw
causes mem

allocation

© 2021 Apex.AI, Inc.

Apex.OS Solution

Apex.OS addresses the following gaps to achieve real-time performance.

Real-Time

static mem operations apex::threading

Blocking calls/deadlocksapex::thread

Better control
over thread
priorities,

scheduling and
pinning

Eliminated

Reliance on OS scheduler
vs ROS executor

Greatly
reduced

thrashing

apex::containers

apex::string apex::
map/set

apex::exceptions

apex::
malloc

Process
defined to

make
catching

exceptions
deterministic

Real-Time DDS

apex::vector

© 2021 Apex.AI, Inc.

Apex.OS Certification Activities per package

1. Reduce the feature set of a package and extensions

2. Investigation to make APIs memory static & ensure

no blocking calls

3. Static Code Analysis (SCA)

4. Structural Coverage (statement, branch and MC/DC)

5. Notations of Designs (modelling diagrams)

6. Principles of SW architecture and design

7. Control and data flow analysis

8. Integration and Specialized tests

9. Requirements and traceability

10. Safety Analysis (FMEA)

11. Generate Safety Artifacts (TUV submission)

12. Testing on Target platform/hardware

13. Tool Classification and Qualification

Total 24 pkgs selected for first release of Apex.OS

Some activities such as Tool classification and qualification,

integration testing done at Apex.OS level.

Close to 100 safety artifacts had to be generated to provide

evidence of ASIL D compliance to our certification agency.

© 2020 Apex.AI, Inc. Confidential.© 2020 Apex.AI, Inc. Confidential.

Apex.OS TCL report AX4119

Branch coverage vs. MC/DC coverage

Branch coverage

Each branch (True and False) should be tested at
least once

A && B

True
False

MC/DC coverage

Every condition in a decision (True and False)
should be tested independently

For example (A && B),

1. Create the truth table

2. Find pairs for which only one condition
independently affect the outcome

a = {1,3}, b= {1,2} -> 1, 2, 3 condition should be
tested.

3. For n conditions we only require n+1 tests

ROW A B Res

1 T T T

2 T F F

3 F T F

4 F F F

https://drive.google.com/open?id=1hYUiXm1XNVUJSLS-kj6bVHxgf9qFe3j1wdXyknXpaWk

©2021 Apex.AI, Inc. Confidential

Structural Coverage
To get to the 100% of line (statement), branch and
MC/DC (pairs) test coverage we had to add 3000 tests
(on top of the 1500 existing tests).

© 2021 Apex.AI, Inc.

What was tedious?

• Getting 100% MC/DC coverage for heavily templated modern C++ code is tedious.
◦ Commercial coverage tool has issues, while it parses modern C++ codes such as a lambda

function and template code. (e.g. on the next slide)

• The code base has a lot of hard to reach defensive type coding.

◦ Required significant stubbing/mocking of C++ standard library, middleware, and external
functions that are implemented in Apex.OS. (e.g. on the next slide)

© 2021 Apex.AI, Inc.

Issues Parsing Certain Modern C++ Constructs

• A method with multiple lambda functions

◦ The commercial coverage tool could not parse a
method that contained multiple lambda functions.

Solution: fixing the bug of the commercial
coverage tool.

class Sub{};
class Pub{};
class C
{
public:
 Sub* create_sub();
 Pub* create_pub();
};

void testme(C* ptr)
{
 C* node = new C;
 auto get_sub = [&node] { return node->create_sub(); };
 auto get_pub = [&node] { return node->create_pub(); };
}

int main()
{
 class A {};
 f<A>();
}

• Template code with locally defined class
◦ The commercial coverage tool cannot parse a class

internally defined in a function or the class that is
used for the parameter of the template class or
function.

Solution: defining the class with the global scope

© 2021 Apex.AI, Inc.

Mocking GNU C Lib Functions: Example: clock_gettime()

clock_gettime(CLOCK_REALTIME, ×pec_now)

GNU C Library

clock_gettime(CLOCK_REALTIME, ×pec_now)

Mock

rcutils_system_time_now(rcutils_time_point_value_t * now)
{
 RCUTILS_CHECK_ARGUMENT_FOR_NULL(now,
RCUTILS_RET_INVALID_ARGUMENT);
 struct timespec timespec_now;
 int32_t posix_error;
 posix_error = clock_gettime(CLOCK_REALTIME, ×pec_now);
 if (posix_error != 0) {
 RCUTILS_SET_ERROR_MSG("clock_gettime error");
 return RCUTILS_RET_ERROR;
 }
 if (RCUTILS_WOULD_BE_NEGATIVE(timespec_now.tv_sec,
timespec_now.tv_nsec)) {
 RCUTILS_SET_ERROR_MSG("unexpected negative time");
 return RCUTILS_RET_ERROR;
 }

Apex.OS source code

int clock_gettime(clockid_t clk_id, struct timespec * tp) __THROW__
{
 int ret = 0;
 if (nullptr != timeUnixPtr) {
 ret = timeUnixPtr->clock_gettime(clk_id, tp);
 }
 return ret;
}

TEST_F(time_gmock, rcutils_system_time_now) {
 rcutils_time_point_value_t now = 0;
 rcutils_ret_t ret;
 EXPECT_CALL(*timeUnixPtr, clock_gettime(_,
_)).WillRepeatedly(Return(-1));
 ret = rcutils_system_time_now(&now);
 EXPECT_EQ(ret, RCUTILS_RET_ERROR);
 rcutils_reset_error();

}

Apex.OS test code

© 2021 Apex.AI, Inc.

Apex.OS Certification Activities per package

1. Reduce the feature set of a package and extensions

2. Investigation to make APIs memory static & ensure

no blocking calls

3. Static Code Analysis (SCA)

4. Structural Coverage (statement, branch and MC/DC)

5. Notations of Designs (modelling diagrams)

6. Principles of SW architecture and design

7. Control and data flow analysis

8. Integration and Specialized tests

9. Requirements and traceability

10. Safety Analysis (FMEA)

11. Generate Safety Artifacts (TUV submission)

12. Testing on Target platform/hardware

13. Tool Classification and Qualification

Total 24 pkgs selected for first release of Apex.OS

Some activities such as Tool classification and qualification,

integration testing done at Apex.OS level.

Close to 100 safety artifacts had to be generated to provide

evidence of ASIL D compliance to our certification agency.

© 2021 Apex.AI, Inc.

What was technically challenging?

• There are no good commercial tools for identifying runtime memory allocations and blocking calls.
We created new internal tool (apex_tracing_check) that uses LTTng framework to flag infractions.

• Making exceptions handling memory static is complex (and still a research topic)
We solved it by patching system malloc() and a special (exception handling) memory pool.
(see next slide)

© 2021 Apex.AI, Inc.

Elimination of Memory Allocation and Blocking Calls (MA/BC) - Approach

• We implemented apex_tracing_check tool which is based on LTTng
• The code is instrumented by adding the macro on top of the function

• It requires to be build with some extra compilation flags to enable the

macro

• After this, test cases are executed to find infractions

• Example on how apex_tracing_check will detect and report infraction/s

Example of mutex infraction in sleep_for() function

© 2021 Apex.AI, Inc.

Elimination of Memory Allocation and Blocking Calls (MA/BC) - Findings

• Using apex_tracing_check and having 100% MC/DC coverage, it’s possible to verify that there is no MA/BC in runtime.

Replacing std::string and std::exception to
avoid memory allocations in runtime

Replacing std::mutex with apex::time_limit_mutex
to avoid blocking system call in runtime

© 2021 Apex.AI, Inc.

Allocation Handling during Exception (apex_malloc pkg)

Allocation request
from an exception
during runtime?

Back to runtime

__cxa_allocate_exception malloc() Apex::exception_allocator()

Search for a free block in
“pre-defined mem pool” and
return ptr to this free block

Exception routine uses the ptr to service.
Stack unwinding will release the block
back to “pre-defined mem pool”

If search return null ptr (unlikely): c++ > qnx
emergency pool. If emergency pool return null
then process terminates

Not from heap,
no fragmentation,
deterministic memory allocation

© 2021 Apex.AI, Inc.

Apex.OS Certification Activities per package

1. Reduce the feature set of a package and extensions

2. Investigation to make APIs memory static & ensure

no blocking calls

3. Static Code Analysis (SCA)

4. Structural Coverage (statement, branch and MC/DC)

5. Notations of Designs (modelling diagrams)

6. Principles of SW architecture and design

7. Control and data flow analysis

8. Integration and Specialized tests

9. Requirements and traceability

10. Safety Analysis (FMEA)

11. Generate Safety Artifacts (TUV submission)

12. Testing on Target platform/hardware

13. Tool Classification and Qualification

Total 24 pkgs selected for first release of Apex.OS

Some activities such as Tool classification and qualification,

integration testing done at Apex.OS level.

Close to 100 safety artifacts had to be generated to provide

evidence of ASIL D compliance to our certification agency.

© 2021 Apex.AI, Inc.

FMEA

FMEA (Failure Mode and Effects) Analysis was
performed on each public API in every Cert
package.

New tests were added as a result of FMEA=>
add example bug from cpputils

33 Software Safety Requirements were added
as a result of FMEA Activity.

40 Restrictions and 25 Recommendations
added to Safety Manual because of FMEA.

FMEA Analysis 17 55 17 3 62

Activity # Real Issues Found # Files Changed # Merge Requests Git Commits # Changed code lines

23

© 2021 Apex.AI, Inc.

Examples of Safety Related Changes from ROS 2 to Apex.OS

Example of requirement tracing
“The function rclcpp::Context::sleep_for() shall timeout immediately when zero and negative values are given
for the nanoseconds argument”

Solution: The function was not working as described. During the requirement tracing the function and its
corresponding tests were fixed

“rclcpp shall provide functionality to assert the liveliness of a publisher”
Solution: There were no tests verifying these requirements. As a result of the analysis a test was added

Example of issue detected as a result from FMEA
“If rclcpp publisher takes more time than is expected to publish a message the application could malfunction”

Solution: If used along with the ApexNode, function calls that exceed the expected time may cause
max_cycle_time to be exceeded, which will then notify the user of the failure.

© 2021 Apex.AI, Inc.

Certification in Numbers

● First round of Apex.OS Cert contained ~65K lines of code
● 14 person years of effort (1 full time for 2 years, 12 full time for a year)
● 24 ROS 2 + native Apex.OS packages certified
● > $5M cost in tool licenses, infrastructure, and engineering resources
● 100% statement, branch, and MC/DC coverage
● ~3000 new tests added to fulfill safety/certification compliance
● ~300 safety requirements generated from FMEA, TSC, and Tools C&Q
● ~100 artifacts submitted to third party auditor (TÜV NORD) for ISO 26262 ASIL D compliance assessment

(~2000 A4 pages if printed)
○ Total of 5 iterations of audits were conducted by TÜV NORD

© 2021 Apex.AI, Inc.

Summary of Safety Related Changes from ROS 2 to Apex.OS

ROS 2

• Not real-time/deterministic
• No formal requirements compliant to ISO 26262
• No safety analysis
• No Static Code Analysis (SCA) or code coverage

Apex.OS

• Several changes to improve real-time/determinism.
Removed all runtime memory allocations and blocking calls.

• Formal requirements written and traced to design and test.
• SW FMEA carried on every package to derive additional

requirements and/or restrictions.
• Full compliance to AUTOSAR cpp14 V3.19 coding guidelines.
• Full MC/DC coverage.

Getting full MC/DC coverage and removing
runtime memory allocations was challenging
and took most of the time!

© 2021 Apex.AI, Inc.

Thanks

Apex.AI
Autoware.Auto

Autoware Foundation
Contact: dejan@apex.ai

http://apex.ai
http://autoware.auto
http://autoware.org

